Chemical Engineering Journal 129 (2007) 91-103

Chemical
Engineering
Journal

www.elsevier.com/locate/cej

Variable density fluid reactor network synthesis—Construction
of the attainable region through the IDEAS approach

Wen Zhou, Vasilios I. Manousiouthakis™

Chemical Engineering Department, University of California, Los Angeles Los Angeles, CA 90095, United States
Received 27 April 2006; received in revised form 3 November 2006; accepted 8 November 2006

Abstract

In this work, the Infinite DimEnsionAl State-space (IDEAS) method and the associated Shrink-wrap algorithm are shown to be applicable to
variable density fluid (VDF) reactor network synthesis (RNS). To this end, mathematical models for variable density fluid continuous stirred tank
reactors (CSTR) and plug flow reactors (PFR) are shown to give rise to linear operators within the IDEAS framework. Using IDEAS, a variety
of convex (linear) objective functions, such as maximization of concentration, yield, selectivity, or economic considerations like minimization of
total reactor volume, or attainable region construction can be handled by linear programming. To demonstrate the effectiveness of the proposed
method, three reactor network synthesis case studies involving gas phase reactions are presented.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Reactors and reactor networks are crucial to the success of a
chemical plant. Consequently, the analysis and design of reactors
and reactor networks have been one of the focal points of Process
Systems Engineering (PSE). At the education level, Gavalas,
Levenspiel, Froment and Bischoff, Fogler, Schmidt, and Rawl-
ings and Ekerdt addressed reactor analysis and design, while
Levenspiel, Fogler, and Rawlings and Ekerdt also addressed
reactor network analysis and design [1-6]. At the research level,
superstructure optimization and attainable region (AR) con-
struction have been the main tools for reactor network synthesis
(RNS).

The initial concept of superstructure dates back to the sixties,
when Jackson studied a network of parallel PFRs interconnected
with sidestreams [7]. A number of different superstructure mod-
els were investigated and a variety of solution methodologies
for the resulting optimization problems were proposed from
then on. Ravimohan incorporated CSTRs as an extension to
Jackson’s effort [8]. Paynter and Haskins used an axial dis-
persion model to avoid discrete decisions on the reactor types
of CSTR and PFR [9]. Ong optimized a serial CSTR network
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by applying dynamic programming [10]. Achenie and Biegler
studied constant dispersion reactors and recycle reactors as net-
work superstructures separately, they also employed macro- and
micromixing concepts to bound the performance index defined
on a reactor network [11-13]. A superstructure, composed of
CSTRs and PFRs approximated by a series of equal sized
sub-CSTRs, was presented by Kokossis and Floudas and the
resulting mixed-integer nonlinear program (MINLP) was solved
using Generalized Benders Decomposition [14,15]. Kokossis
and coworkers extended the methodology through the use of
stochastic optimization [16,17]. Hillestad presented an opti-
mal control formulation of the reactor design problem, where
the resulting two-point boundary value problem was solved by
using a steepest descend method [18]. Although superstructure
optimization can handle variable density fluid reactors as well,
it continues to yield mathematical programming formulations
that are nonlinear and nonconvex, and can thus only be solved
locally. Furthermore any obtained solutions are only as rich as
the initially suggested superstructures.

The Attainable Region (AR) concept was first defined by
Horn as the full set of product composition vectors that can
be reached by all possible steady-state reactor networks, using
only the processes of reaction and mixing/splitting from a given
feed point [19]. Gavalas introduced a similar concept that he
coined an invariant manifold [1]. The AR concept was further
developed by Glasser et al. who employed a geometrically
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Nomenclature

C total molar concentration (kmol/ m3)

Ci ith component’s molar concentration (kmol/ m3)
f molar flowrate (kmol/s)

fi ith component’s molar flowrate (kmol/s)

F volumetric flowrate (m> /s)

M; ith component’s molecular weight (kg/kmol)

M average molecular weight (kg/kmol)

P operating pressure (atm)

q mass flowrate (kg/s)

ri ith component’s generation rate (kmol/m?> s)

T operating temperature (K)

u input vector of an information map

u extensive variables of input vector of an informa-
tion map

up intensive/design variables of input vector of an
information map

|4 reactor volume (m?)

Xi ith component’s molar fraction

y output vector of an information map

y1 extensive variables of output vector of an infor-
mation map

2 intensive/design variables of output vector of an
information map

Zi ith component’s mass fraction

Greek letters

A reactor type identifier, O for PFR and 1 for CSTR

] input—output information map from u to y repre-
senting a process model

o] component of @ mapping from u to y;

Dy component of ¢ mapping from u to y,

o reactor design parameter, defined as V/g (m? s/kg)

(-)in property at the inlet of a unit

(-)°"  property at the outlet of a unit

based construction [20,21]. Much of their work focuses on
geometric interpretations of reaction and mixing and does
not employ any assumption on the structure of the reactor
network [22-24]. Although AR analysis has been successful in
quantifying fundamental limitations of reactor networks, it is
only applicable to two- or three-dimensional problems and has
only been developed for constant density fluids [13,25-29].

In recent years, research has focused on the computational
construction of the AR using linear programming (LP) formula-
tions. The IDEAS framework was first proposed by Wilson and
Manousiouthakis [30], and then applied to a wide range of pro-
cess network synthesis problems [31-35]. IDEAS gives rise to
an infinite linear programming (ILP) formulation. The optimal
value of this ILP is approximated through solutions of a sequence
of finite linear programs of ever increasing size. IDEAS has been
applied to the construction of the true AR by Burri et al. [31].
Kauchali et al. also employed an alternative IDEAS formulism

to seek the extension of AR candidate sets obtained with tradi-
tional geometrically based construction [36]. In doing so, they
approximated PFRs with a series of CSTRs. Manousiouthakis
et al. also employed a superset guaranteed to contain the true
AR [37]. They presented and proved a necessary and sufficient
condition for a point in concentration space to belong to the AR,
and proposed a so-called Shrink-wrap algorithm for the approxi-
mation of the true AR to an arbitrary degree of accuracy, through
progressive elimination of extreme grid points not satisfying the
above necessary and sufficient condition.

All the aforementioned AR construction works employ the
constant density fluid (CDF) assumption. In this work, we
present, for the first time, a methodology for the construction
of the true AR of reactor networks that consist of variable den-
sity fluid (VDF) CSTR and PFR models. This methodology is
based on the IDEAS approach to process synthesis. In particular,
it is shown that appropriately defined input—output information
maps for VDF CSTR/PFR models possess the decomposition
and linear input-output properties needed for application of
the IDEAS framework. Furthermore, it is established that the
IDEAS based Shrink-wrap algorithm is applicable to the VDF
AR construction problem when the latter is formulated in mass
fraction space. AR construction for three, gas phase, reactor
networks with isobaric and isothermal conditions is employed
to illustrate the applicability of the IDEAS framework to
VDF RNS.

2. The IDEAS approach
2.1. Preliminaries, linearity of the IDEAS framework

The IDEAS framework decomposes the overall process net-
work into two parts: the distribution network (DN) where all
possible mixing, splitting, recycling and bypassing of process
streams occur; and the process operator (OP) where the action
of process unit operations is quantified. Stream information
in IDEAS is stored in a way that stream extensive (quantity)
properties (e.g. flowrates) and stream intensive (quality) proper-
ties (such as concentrations, molar enthalpies, molar fractions,
etc.) are dealt with separately. The key development behind
IDEAS is that the domain and range of the map quantifying
process unit operations in the OP lie in infinite (rather than
finite) dimensional spaces. Process operators in traditional rep-
resentations consider intensive and extensive properties, and
design parameters to be variable. In the IDEAS representa-
tion, the OP fixes intensive properties and design parameters
at any combination of values they can possibly assume. To
each of such combination, a vector of extensive variables is
assigned, thus giving rise to a sequence, of such extensive
variable vectors, belonging to an infinite dimensional space.
Furthermore, when the intensive properties and design parame-
ters are fixed, the extensive property input—output map is linear,
thus giving rise to a linear OP. In addition, the DN contains
solely mixing and splitting operations. Since the intensive prop-
erties concerning any stream leaving or entering the DN are
known, the resulting balance equations are linear and infinite in
number.
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The linearity of the OP and DN gives rise to a lin-
ear and infinite dimensional feasible region of the IDEAS
representation. Consequently, when the objective function is
convex, all locally optimal solutions of the resulting process
network synthesis problems are guaranteed to be globally
optimal.

To elaborate on how the linearity of the OP is achieved, con-
sider a general input/output information map @ describing a
process operation:

Pi(ui, uz)

231 1
Du= — y= =
[ [}Q] Do(uy, uz)

uz

where ueD={u="[u; ur]T €eR*: W(ur)u; =0}; y=
[y1 21T € R¥; uy (uz) and y; (y2) are extensive (inten-
sive/design) variables of the map’s input and output,
respectively; W(uy) is a linear operator for fixed us; and @
and @, are viewed as components of @ mapping u to y; and y»,
respectively. Usually W(us) = 0, thus allowing u to be free to
move in the whole R¥.

If the following two properties are satisfied by the afore-
mentioned map @, then the linearity of the OP of the chemical
process under consideration within the IDEAS framework can
be achieved:

ey

e Istproperty: yo = @2(uy, uz) = ®2(u2),i.e.thereisnodirect
dependence between u1 and ys.

e 2nd property: y; = @1(u1, uz) = @1(uz) u; where @1(uy)is
a linear map for fixed u5;.

Indeed, properties 1 and 2 ensure that as u; varies, y; is not
affected since it is only a function of u>, and y; is a (possibly u»
dependent) linear function of #. Combined with the definition
of D, this implies that if this process operation is part of a net-
work optimization problem in which u; is kept fixed, then it gives
rise to linear constraints. To take into account all possible values
of u;, the network size is then expanded to include an infinite
number of possible unit operations each of which corresponds
to a possible value of u;. Consequently, the OP can be modelled
by an infinite number of units, each of which has prior speci-
fied values of uy = i1, which in return specifies y» = y, from
y2 = @>(u2), and generates linear constraints y; = @1(ii2) uy,
(i) ur = 0.

To demonstrate, consider a constant density fluid CSTR in
which a 2nd order reaction: 2A; — Aj, is carried out with
reaction rate coefficient k. The associated model is

Cot — it = —20k(CPMY? )
M — O = th(CP™)? 3)
V =1tF 4)

where F is the volumetric flowrate in and out of the reactor
(m3/s); CIM (C$™Y) and CI!' (CS™) are the molar concentrations
of A1 and A, atthe reactor inlet (outlet), respectively (kmol/ m3);
V the reactor volume (m3); and 7 is the reactor residence
time (s).

The linearity of the OP can be attained in a number of ways.

First, @, u and y can be defined as

F
u -
d:u—>y, u=|——|= Ciln ;

U C12n

T
F
i \4
y=|-—|=]-—
» et
Cgut

where u € R*, W(up) =0, y€E R*. It is easy to prove that @
possesses the aforementioned two properties needed for OP
linearity. Indeed,

(2)(3)
D tup =" yr = DPo(ur)

—1+ /1 + 8zkCi"

4tk

. —14 /1 + 8zkCin
C2 +Tk

4tk

and thus @, satisfies property 1. Furthermore,

T “)
Di(up) = [1 ‘[} U=y

is a linear operator for any fixed u», thus satisfying property 2.
Another way @, u and y can be defined is as follows:

F
uj ——
P:u—y, u=|——|= C‘f”t :

u» Cgut

c
F
i 14
y=|—|=|-—
»2 chn

T

where u € R* W(uy) = 0, y € R*. Thus

1 .
(2)(%) C<2)ut _ E(Clln _ C?u[)
Dy tuy = yr = Do(up) = cin  cout ;
2k(CM)2

Cin — vt T @
ke | T

@, satisfies property 1, and for any fixed u», 7 is fixed, which
ensures @ (uy) is a linear operator, thus satisfying property 2.

i) 2 [17]" = {1
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Finally, another way @, u and y can be defined is by first
rewriting the CSTR model as

FC(fut _ fin — _2Vk(C(1)ut)2 5)
FC3™ — f3" = VK(CP™)? (6)

where flin and fzin are the inlet molar flowrates of A; and A,,
respectively (kmol/s). Then,

in 7]
1
i
Ui F
Piu—y u=|-——|=V |} y=Inl=I[F]
U —
CclJut
Cout

where u € D = {u € R® : W(uo)u; =0}; y = y; € RY;
-1 0 ™

0 -1 g

2k(C™)?

W(un) =
(u2) —k(Couy?

As a result, property 1 is automatically satisfied since there is
no need to define a @;. Similarly, property 2 is satisfied since
the map @1(u2) £ [0 0 1 0] :u; — yjis linear.

Different ways of attaining linearity of the OP will result in
different IDEAS optimization formulations with different com-
putational characteristics.

2.2. Unit operation models for variable density fluid
reactors

In this section, it is shown that the two properties, shown in
Section 2.1 to lead to OP linearity, are satisfied by steady state,
isobaric, isothermal, VDF CSTR and PFR models.

2.2.1. Variable density fluid CSTR models

Molar model. Consider a VDF CSTR containing n com-
ponents whose generation rates are expressed in molar
concentrations. A typical model for this unit operation is
expressed in terms of molar flowrates and molar fractions as
follows:

fOth out fln 1n — Vrl({cout}k 1)7 Vl — 1’ - 1 (7)
out 1n =V Z rl({COut}k 1) (8)
CP = CQM (Y2l T P), Vhk=1,....n 9)

11’

where £ and f°' are the molar flowrates at the reactor inlet
and outlet, respectively; x%n and x$" are the ith component’s
molar fractions at the reactor inlet and outlet, respectively; and
r; is the ith component’s molar generation rate per unit vol-
ume. Egs. (7) and (8) are component and total balances, while
Eq. (9) says that each component concentration is a function of
temperature, pressure and molar fractions. Chemical thermody-
namics provides several models that can be brought in the form

of Eq. (9) for both gas and liquid phase mixtures. For example,
if a compressibility factor (Z) model is used, one could write
Cr = xk(P/RT)(l/Z) where R is the gas constant; Z is a func-
tion of {x J} 1, T, P. In the simplest example of an ideal gas
phase mlxture we then have Z = 1.

By defining two parameters: £ = V/f"; n = foU/f" the
model can be rewritten as

et — X = (O ), Yi=1,...,n—1 (10)
n—1= @Zn({cm“}k D (11)
CP = MYz LT,P), Yk=1,...,n (12)
o = (13)
V=gt (14)

The above equations can be used to define an input—output infor-
mation map @ : u — y as follows:

in
f r fout T
. \%
in
xl L
in
uj X V1 x(l)ut
u = —_— = . ; = _— = out (15)
. y .X2
un in 2
Xn—1 Y :
; Xt
P L n

u € R™3, W(up) =0,y € R*2

The aforementioned map satisfies properties 1 and 2 outlined
earlier and therefore the IDEAS approach is applicable to this
VDF CSTR model. Indeed, @, and @ (u,) take the form:

(10),(11),(12)
D)t up — 2

(13),(14)
up — n

() ¢]"

Once again, when u; is fixed, n(u>) is fixed and @; becomes a
linear operator.

Mass model. Taking into account the fact that no matter what
reactions happen in a reactor, the total mass flowrate ¢ will not
change because of the mass conservation principle (i.e. g™ =

out

q°"" = q), an alternative VDF CSTR model can be developed in
terms of mass flowrates and mass fractions as follows:

D1(up) =

gz — gz = VMir((C"Y_), Yi=1,....n—1 (16)

Cout Cout({zout}n 1 T, P)

"l Vk=1,....,n (17)

where z} and z{" are the ith component’s mass fractions at
the reactor inlet and outlet, respectively; and M; is the ith com-
ponent’s molecular weight. Recall the following relation for a
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mixture:
. _

_ 1 M

M = XiMi = ————; Xi =2Z{— (18)
; T Myt M,

where M is the average molecular weight. Thus, Eq. (17) can be
obtained by combining Eqs. (9) and (18). Then by defining the
design parameter o = V/g, the model becomes:

U = oM ((CY_), Yi=1,...,n—1 (19)
G = C"UYiZ T P) Vh=1....n (20)
V=o0g 21

An input—output information map @ :u — y can then be
defined as

q
- q
in
21 \%
in N
uj 2 Y1
out
u=|-—|=|:|: y=|-—|=|™| @@
Z(2)ut
us in 2
p—1 Y
o
T Zout
L<n—1J
(. P -

whereu € R"3, W(uy) = 0,y € R**!. @, and @ (u») become:

(19),(20) 2D
2 >

Dy :u 2; <P1(u2)é[l 0]T1u1—>y1
2.2.2. Variable density fluid PFR models

Different from CSTR models which include a set of non-
linear algebraic equations, PFR models consist of a set of
ordinary differential equations. As a result, besides defining
parameters similarly to CSTR models, corresponding differen-
tial elements need to be defined as well.

Molar model. For the molar flowrate/fraction PFR model,
Z=v/f™ and 7 = f/f™ are defined such that the differential
element d( fx;)/dv becomes d(7jx;)dZ. Thus the model can be
written as

d(@x;)

@ =rn({C)i=), Yi=1,...,n—1 (23)
di <

i l;n({ck}z:l) (24)
Ce=C({x)YiZ{. T.P), Yk=1,..n (25)
t=0=>n=1 x=x" Vi=1,...,n-1 (26)
t=C¢=n=n x=x" Vi=1,...,n-1 27)
o=t (28)
V=gt (29)

To depict an input—output information map @ : u — y for
IDEAS, u and y can be defined the same way as Eq. (15), and

@, and @1 (uy) take the form:

(23),(24),(25),(26),(27)
452 S Uup —> y

)

T (28).(29)
Di(up) £ [nwa) ] tup TSy
Mass model. For the mass flowrate/fraction PFR model,
0 = v/q is defined such that the differential element d(gz;)/dv
becomes dz;/dé. The model can then be written as

% = Miri({CYi_), Vi=1,...,n—1 (30)
Co=Cz}iZ|,T.P), Vk=1,....n 3D
5=0=2z=2", Vi=1,...,n—1 (32)
G=o=>z=2" Vi=1,...,n—1 (33)
V =o0q (34)

u and y can be defined the same way as Eq. (22), and @; and
@1(up) become:

(30),(31),(32),(33) (34)
2 —

T
Dy u ¥2; @1(u2)é[1 O'} Tup =y

The above verifies the claim that properties leading to OP
linearity are satisfied by steady state, isobaric, isothermal, VDF
CSTR and PFR models. Whether the molar or mass based mod-
els are employed is the designer’s choice. For example, when
reaction rates are described in terms of partial pressures, the
molar flowrate/fraction models may be preferable. In this work,
the mass flowrate/fraction models for both VDF CSTRs and
PFRs are used.

It is worth pointing out here that the above models are general
and thus suitable for handling the situation where the constant
density assumption is employed as well. For example, consider
the CDF CSTR model:

. \%
C?ut _ Cllll _ 7ri({ck}Z:l)’ Vi= 1, R () (35)

~ Fin
and let FI™ (FOU), pi" (p°") be volumetric flowrate and mass
density at reactor inlet (outlet), respectively. Then, by mul-
tiplying M;/p"™ on both sides, and taking into account that:
F?npm = Foutpout =g C?UtM,'/,Om — pout Zlqut/pm — Z;)ut and
Ci"M;/p™ = zI", one gets

: Vv
M- = EM,-}’,-({C;{}ZZI), Vi=1,...,n (36)
which is Eq. (19).
2.3. IDEAS representation for VDF RNS

2.3.1. Variable definitions

Fig. 1 illustrates the IDEAS representation for VDF reac-
tor networks with Ny external (network) inlet streams and No
external (network) outlet streams.

Each network inlet stream is represented by ¢'(j) and
2(j)Vj=1,..., N;, where the scalar ¢'(j) represents the
extensive property (mass flowrate) of the jth network inlet
stream and the vector z'(j) represents the intensive proper-
ties (mass fractions) of the jth network inlet stream defined as
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{0}
E0)
S R DN[ . . -
R 9l {do}
wor, o | {0l
ol o, - U
R ~a) 8,
A L {0},
{a°0}
{zé(j)}::1 ‘ oP
Hok, - :
' Ty
®

Fig. 1. IDEAS representation for process networks.

. ; . 1T
2 = [ZII(J) 210) 131—1(])] . The sequence of net-
work inlet stream extensive and intensive properties are defined
as ¢' and z:

' ={g'1),4'@. ... 4" N
=M, @, ... )
Similarly, the following property sequences are defined: q°

and z© for the network outlet; ¢! and z! for the OP inlet; ¢© and

2O for the OP outlet and four sets of cross-flow streams each of
which is represented by a flowrate with destination and origin:

qOI, qﬁ, qoo, qio are defined as well (Table 1). Each process
unit in the OP is represented by a map @() : u(l) - y()VI =
1,..., 00.

2.3.2. Optimization formulation

Under the steady-state, isobaric and isothermal assumptions,
the IDEAS optimization formulation for VDF RNS can then be
written as

v = inf

i 6 o1 it 00 ioyOBJ 37
(ql‘qo’ql’qquOI’qll)qOO’qIO) ( )

S.t.

No oo
qH=> " n+> ¢"GpH. Yi=1l...N (38
i=1 i=1

Ny [e%e) N
i) =Y ¢%@ N+ ¢°°G ) Yi=1,....No (39)
j=1 j=1

PN NI A oo aAA
q'i)=>_q"@.H+> ¢°G ). Vi=1,..,00 (40
j=1 j=1

A NO A et A A
°HD=> 4G H+> G j Vi=1,...,00 (&)

i=1 i=1

Table 1

Variable and parameter definitions

Ny Number of network(external) inlet streams

No Number of network(external) outlet streams

z}( )] kth component mass fraction in the jth network inlet
k=1n—-1,j=1,N

Zko(i) kth component mass fraction in the ith network outlet
k=1,n—1,i=1, No

z;{ @) kth component mass fraction in the ith OP inlet k = 1,
n—1i=1,00

z?( ) kth component mass fraction in the jth OP outlet
k=1,n—1;j=1,00

4'(j) Jjth network inlet mass flowrate j = 1, Nj

qo(i) ith network outlet mass flowrate i = 1, No

qi @) ith OP (reactor) inlet mass flowrate i = 1, oo

q()( 7 Jjth OP (reactor) outlet mass flowrate i = 1, co

4°'(ij) Flowrate from the jth network inlet to the ith network
outleti =1, No; j =1, Np

qﬁ(i 7) Flowrate from the jth network inlet to the ith OP inlet
i=1,00;j=1,Np

qoo(i ) Flowrate from the jth OP outlet to the ith network outlet
i=1,No;j=1,00

qi() @) Flowrate from the jth OP outlet to the ith OP inlet
i=1,00;j=1,00

u(l) Input of the information map for the /th process unit
=100

() Output of the information map for the /th process unit
=100

a a NI A o0 A N
4()q'D) = %(Ne" @ )+ Y R (1Hg0a. )
j=1 j=1
Vk=1,...,n—1;Vi=1,...,0 42)

@O < %0 < Pain™, vi=1,...,No 43)

Ni 0o R
@O0 < Y (%G D+ Y RN )
j=1 j=1

< )06, Yk=1,....,n—1;

Vi=1,...,No (44)
O _ 1,: C
g ()=q@(), Vi=1,...,00 (45)
=0 >0 ;4620 ¢®>0;
=0 q">0; ¢°°>0, 4°>0 (46)

where sequences (z2)°% ((z©)"PP) and (¢°)'°% ((¢°)"PP) are
lower (upper) bounds of sequences z© and ¢°, respectively. Eqs.
(38)—(41) correspond to total mass balances in the DN; Egs. (42)
and (44) represent component balances in the DN. In this work,
the linearity of the OP is achieved by defining @ : u — y as
follows:
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[ 40
10
ui(l) ziz(l)
uh=| — =] 7 |:
ua(l) K
Zz—l(l)
o)
A
EXOR
V()

i) R
)= |- | = 340 ,

() 20)

Vi=1,...,00 47

10,0

where u(l) € R"2, W(uy(1)) = 0, A is allowed only to be 0 or
1 and is used as a technology flag to identify the reactor type
(i.e. 0 for PFR and 1 for CSTR), y € R"*!. Correspondingly,
Do(D) : ua(l) — y2(l) becomes

dz —1

da_:Mkrk({Z]};lzlazp)’ Vk:la-"vn_l;

2lo=0 = (), Zklomowy = 20D, Vhk=1,...,n—1

if A1) =0 (48)
RO — 7 ) = oM ({27 DYIZ], T, P),
Vk=1,....n—1, ifal)=1 (49)

and @1(]) : u1(l) — y1() takes the form: [1 o(I) 1T. The pro-
cess is elaborated as the following: by fixing u, at any possible
condition, and by calculating y> as @,(u>), one then creates a
linear OP that maps an infinite number of variables u| through
the linear map @(u2) to an infinite number of variables yi.
This linear OP is represented by Eq. (45), since reactor volumes
{V(D}72, donot show up in the constrains and can be substituted
by V() = o(l)q(l) if they are in the OBJ. It is worth pointing out
that components of sequence z' could be identical, and so does
z0. Indeed, it is easy to find out that there could be up to infinite
number of same mass fraction vector as o varies from 0 to co.
A convex (linear) functional is considered as an objective for
the IDEAS optimization. A variety of objectives can be real-
ized by appropriate selection of the cost coefficients, including
maximization of concentration, yield, selectivity or economic
considerations such as minimization of total reactor volume.

3. VDF AR construction

The VDF RNS AR problem can be stated as follows: given
reaction kinetic information, what is the set of points in com-
position (molar concentration, molar fraction or mass fraction)
space that can be attained as product compositions of a VDF
reactor network with a given feed.

3.1. IDEAS adaptation to VDF AR construction

Considering an isobaric, isothermal reactor network with a
single inlet and a single outlet (i.e. N = Ng = 1), a point on the
AR boundary can be found by formulating an objective function
that maximizes the mass fraction of the desired product (i.e. kth
component) in the network outlet stream, while fixing the mass
fractions of concerned component(s) (i.e. use K to represent the
union of the indices of these components) in the outlet stream
at their coordinates’ value(s). Apparently k ¢ K C {i ;- Then
the total AR boundary can be constructed in this pointwise man-
ner. The objective function is formulated as

OBJ = z2(1) (50)

In addition, the lower/upper bounds (z°(1))'%, (z°(1))"PP are
selected to be

@)™ = @) = Z2(D),
where z,?(l) is the fixed value of zko(l) in the network outlet.

The aforementioned IDEAS optimization formulation is an
infinite dimensional linear program, whose solution can be
approximated by the optimal solutions of a series of finite linear
programs of increasing size. There are plenty of ways to gen-
erate finite dimensional programs. To show how this is done,
consider the CSTR example of Section 2.1 and the second way
of achieving linearity of the OP. At the outset, we presume that
we know lower/upper bounds of C ?“t, C ‘2"“, C i]“. These bounds
may be crude, or may be derived from brief analysis of the
kinetics. By introducing a uniform grid in all three dimensions
(C9™, CSU, CiM) and using Egs. (2) and (3) to calculate CIP, ,
we can generate a finite number of feasible CSTRs and corre-
sponding OP inlet/outlet streams.

Vke Kk (51)

3.2. Applicability of the Shrink-wrap algorithm for VDF AR
construction

The IDEAS formulation for reactor network synthesis of vari-
able density flow in terms of mass flowrates and component
mass fractions (Eqs. (37)—(46)) is analogous to that formu-
lated by Manousiouthakis et al. for constant density reactor
network synthesis, in terms of volumetric flowrates and com-
ponent molar concentrations [37]. Indeed, using the definitions
of (in)active reactors, isolated subnetworks and well-connected
networks/subnetworks, and following the analysis in Ref. [37]
by replacing volumetric flowrates and component molar con-
centrations with mass flowrates and component mass fractions,
respectively, one can readily obtain a similar theorem as Theo-
rem 2 in Ref. [37], which is restated as follows.
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Theorem 1. A necessary and sufficient condition for a point in
mass fraction space to be in the VDF AR is that it must belong
to the convex hull, defined by the feed point mass fraction vector
and those outlet mass fraction vectors corresponding to active
reactors that do not belong to an isolated reactor subnetwork,
and whose inlet mass fraction vectors are also in the convex
hull.

As a result, the Shrink-wrap algorithm is applicable to VDF
AR construction problems. This is a significant development
which allows identification of the VDF AR without solution
of large finite linear programs. It is important to emphasize at
this point that extension of the Shrink-wrap algorithm to the
VDF AR construction problem is not possible for mole based
reactor models. As discussed earlier, mass flowrate/fraction and
molar flowrate/fraction models are possible for VDF CSTR’s
and PFR’s. Both are eligible to be employed in the IDEAS
framework for reactor network synthesis, and lead to infinite
linear programming formulations. However, since the molar
flowrate through a VDF reactor changes, Eq. (45) is altered as
follows:

£00) = i) fl@), Vi=1,.... 00 (52)

Because of this change, the analysis in Ref. [37] cannot
be carried through when replacing volumetric flowrates and
component molar concentrations with molar flowrates and com-
ponent molar fractions, respectively. Fortunately, however the
use of mass flowrates/fractions permits the use of the Shrink-
wrap algorithm in quantifying the VDF AR.

3.3. Reactor network for desired product composition

In the ILP optimization methodology, identification of each
AR boundary point is carried out simultaneously with the
identification of the reactor network that delivers this point
as its exit. The composition of AR interior points can then
be reached through mixing of boundary points with the feed.
However for the Shrink-wrap algorithm, these reactor networks
are not identified as the AR is constructed (Shrunk) from a
superset. Nevertheless, once the AR is identified, a reactor net-
work can be identified that delivers any point in the AR as its
exit.

Let the CSTR (PFR) forward trajectories from the feed be
denoted as Ty(T), and the convex hull defined by 77 and T be
denoted as H; (a closed hull). In addition, consider a desired
product composition point in the AR, and let the CSTR (PFR)
backward trajectories from this point, excluding the point itself,
be denoted as Tz(Tz). Let also the convex hull defined by H;
and the desired composition point be denoted as H» (a closed
hull). If the desired composition point belongs to T7(T7), then
a CSTR (PFR) from the feed can be used to deliver the desired
composition as its exit. If the desired composition point does
not belong to 77 and Ty, but belongs to Hj, then a reactor net-
work, consisting of one or two reactors (a CSTR and/or a PFR
from the feed), can be used; the desired composition can be
obtained through mixing of the feed and product(s) of the reac-
tor(s). If the desired composition point does not belong to Hj,

but Tz(Tz) has a point of intersection with H», then the compo-
sition of any intersection point of TZ(TZ) and H, can be used as
the feed of a CSTR (PFR) which delivers the desired composi-
tion as its exit, and this composition can be obtained by mixing
the feed, product(s) of a CSTR and/or a PFR from the feed
and the desired composition. The cross-flowrates of the reactor
network can be obtained from the solution of balance equa-
tions (38)—(46) with known compositions, network inlet/outlet
flowrates and finite reactors. A feasible solution of this prob-
lem is always guaranteed, as shown in Ref. [37], through the
use of mixing ratios and subsequent identification of the reac-
tor flowrates through solution of a set of linear independent
equations, with equal number of unknowns and equations. If
T» and T» do not intersect with H, the following can be used
to identify a feasible reactor network. Let PU be the composi-
tion point union containing all extreme and interior grid points
of the AR obtained from the Shrink-wrap algorithm exclud-
ing composition grid points contained by Hj. For the current
PU:

(1) Select a composition grid point and let the convex hull
defined by the selected point and H, be denoted as H3 (a
closed hull). If H3 has no point of intersection with 7, and
T», anew PU is generated by eliminating the selected point
from the current PU and starting over.

(2) Otherwise, let the backward CSTR (PFR) trajectories at the
composition of the selected point, excluding the selected
point itself, be denoted as T3(T3). If either Tz or T3 has
no point of intersection with Hz, a new PU is generated
by eliminating the selected point from the current PU and
starting over.

(3) Otherwise, any intersection point of H3 and 7>(T») can be
used as the feed of a CSTR (PFR) which delivers the desired
composition as its exit; and any intersection point of H3
and T3(T3) can be used as the feed of another CSTR (PFR)
which delivers the composition of the selected point as its
exit. The selected intersection points of H3 and Tz(Tz), and
H; and T3(T3) can be obtained by mixing the feed, prod-
uct(s) of a CSTR and/or a PFR from the feed, the desired
composition and the composition of the selected grid point.
As before, the cross-flowrates of the reactor network can be
obtained from the solution of balance equations (38)—(46)
with known compositions, network inlet/outlet flowrates
and finite reactors.

If selecting one point at a time from the PU does not suc-
ceed, then selecting two (or more) points at a time can be
used, and the process can be continued until a reactor network
that delivers the desired composition as its exit is identified.
From the Shrink-wrap algorithm, it is guaranteed that a reactor
network with a finite number of reactors can be identified to
deliver any composition point in the AR as its exit, although it
is possible that, all extreme points defining the AR may need
to be used. However, practical experience suggests that the
procedure succeeds in its early stages, and this is illustrated
in the case studies. It is also important to point out that the
procedure is applicable to both constant density and variable
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density AR’s, in concentration space and mass fraction space,
respectively.

4. Case studies

In this section, IDEAS is employed to identify the VDF AR
for three gas phase reaction case studies. Reactors are presumed
to be isothermal and isobaric. All computational efforts are car-
ried out on a Linux machine with an AMD 2400+ MP cpu
running at 2 GHz clock speed.

4.1. Trambouze reaction kinetics

Consider the following Trambouze-like gas phase reaction
pathway taking place in an isothermal, isobaric reactor network,
where P = 56 atm, 7 = 550 K. The feed is pure reactant A,
and we seek to create the AR for components A; and A3 in mass
fraction space under the condition that gases are considered to
be ideal.

Ai(gas) ﬁ) Aj(gas) (zeroth order, k1 = 0.025 kmol/ (m3 s)),
Ay ﬁ% 2 A3 (gas, product) (first order, k> = 0.2(1/s)),
Al ﬁ) As(gas) (second order, k3 = 0.4 m3/(kmol s))

Molecular weight M; = 40kg/kmol. The component gener-
ation rates for this reaction scheme are

ry = —ki — kaCy —k3C%;
r3 =2kyCr; ra = k3C}

ry = ki;

First we derive the relations of component concentrations and
mass fractions (i.e. Egs. (20) and (31)). Since

_ 1 _ 1

Ci =Cx;, C3=Cuxs; =Mz1—, =Mz3—;
1 X1 3 X3 X1 Z1M1 X3 Z3M3
i = ! :

(z1/M1) + (22/M2) + (z3/ M3) + (z4/ M)’
My =M, =My =2M3, z71+z220+z3+z4a=1
it then holds:

2
ci=c—=L . c=c=2 (53)
1+ 2z3 1+ 2z3

where C, M are the total concentration and the average molec-
ular weight, respectively, and x; and z; are molar fraction
and mass fraction for the ith component, respectively. In
addition, based on the isothermal, isobaric and ideal gas assump-
tions, C = P/RT = C° = 1.237kmol/m>. As aresult, Eq. (53)
become:

21 2z3

C;=C° ; Cz =C° 54
! 1423 ’ 14 2z3 G

Since the generation rates for components A; and A3 depend
solely on z; and z3, the VDF mass fraction/flowrate CSTR/PFR
models for this case take the form.

CSTR model
o,
O ;) — 71 (i ; . 2P0
Z(l)(l) —le(l) =o()M, | —k1 — k,C 170.
1+Z3 (l)
A 2
Oy
_k3 Cozli(l,\) (55)
1+296)
o,
O ; ye H o < @)
20) - 24) = o()M3 | 2kaC°—0— )|
1+Z3 (l)
ifai)=1, Vi=1,...,L 56)
PFR model
R B e (co d )2 .
B - 1 — k2 I+ 3 o :
I b,
Z1le=0 = Z](l), Zl|5’:a’(i) =7 (i) (57)
dZS 21 i .
——= = Mj; ( 2k C° : o=,
do 3< ? 1+z3> alo=0 = 230
tlomoy = 90, A =0, Vi=1,...L (58)

As aresult, the IDEAS formulation for a L-size finite dimen-
sional approximation program can be summarized as follows:

¢' =gy, =)= {A40 AMI)

© ={°), =W =D L)1)

¢° =14°(1).¢°@). ... ¢O(L)},

22 =2, 2°Q), ... 2Wy;

LG =100) SHIT ¢ =1 .4 @.....4L)
d={'W.d.. Ao do=de dol”

Fig. 2 shows the result of the IDEAS computation, and Fig. 3
shows a reaction network, obtained by employing the procedure
stated in Section 3.3, to achieve the maximum mass fraction of
the product As.

The dot—dash curves are results in mass fraction space, when
the constant density and isothermal operation assumptions are
employed (no longer isobaric condition). Indeed, when the fluid
density is constant, the following holds:

1 1
C1+C2+EC3+C4=C?:>C—EC3=C0 (59)
as compared to the relation C = C” which holds for the variable
density fluid. Combining Eq. (59) with Eq. (54), which holds
for both the CDF and VDF cases, we get the following relations
under the constant density assumption:

_Cl. C3

=L =3 60
o’ BT a0 ©0)

21
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Fig. 2. Trambouze reaction kinetics attainable region in mass fraction space.

With these expressions, the Shink-wrap algorithm is carried out
to construct the AR in mass fraction space for the CDF reactor
network.

It can be seen from Fig. 2 that the constant density AR
contains higher mass fraction values for product A3, than when
the variability of density is properly accounted for. The variable
density AR boundary consists of a straight line that is tangent
to the VDF CSTR curve and goes through the network feed,
and a VDF PFR trajectory starting at the previously identified
tangent point. This behavior is similar to that exhibited by
the constant density AR. It can be seen from Fig. 3 that the
maximum A3z component mass fraction can be obtained by
a reactor network that consists of a VDF CSTR followed
by a VDF PFR. In the identification procedure, the desired
composition point corresponding to maximum A3 mass fraction
(i.e. (z1, z3) = (0.0, 0.467)) does not belong to 77 and 77, and
does not belong to Hj. However, the PFR backward trajectory
from the desired composition point (i.e. T») intersects with
H,. Indeed, T> intersects with 7. To this point, the procedure
succeeds and the reactor network in Fig. 3 is identified.

4.2. Reversible Van de Vusse reaction kinetics

Let us consider the following Van de Vusse-like gas phase
reaction pathway taking place in an isothermal, isobaric reactor
network, with a feed of pure reactant A; and C (1) = 2.0 kmol/m>.
We seek to create the AR for components A; and A, in mass
fraction space again employing the ideal gas assumption.

Aq(gas) ﬁ) Aj (gas, product)
(firstorder, k1 = 1.0 x 107*(1/s));

A, B Ay (firstorder, ks = 5.0 x 1073 (1/5)):

7, =10 Jestr L2 =0.284 JPER L2 =0.0
2,=00 1 7 =0358 LI 7, =0467

3
0=0.173 0=0.143

Fig. 3. Reactor configuration for trambouze reaction kinetics.

0.0012 T T T
Variable Density
oy Constant Density --—-—
0001}/ o -
|; { \.\~
0.0008 -+ N §
j 3 AR
A \ —N
22 0.0008H/ 1 ™, \ -
0.0004 iy CSTR™, . 1
PER— Ty
i, ey R
0.0002 T, e T A
0 L 1 L L
0 0.2 0.4 0.6 0.8 1

Z4

Fig. 4. Van de Vusse reaction kinetics attainable region in mass fraction space.

2A, E A3z(gas) (second order, k3 = 2.0 x 1073 m3/(kmol s));

2A1 f‘) As(gas) (second order, k4 = 0.2 m3/(km01 s))

where the molecular weight is M; = 25 kg/kmol. The reaction
rates for this reaction pathway are given as

rn=—kiCi+kaCy — k4C12; rn=k1Cy —kyCr — kscg;
1 2 [
r3:§k3C2, r4=§k4C1

Again C = P/RT = C° = 2.0kmol/m>. The following rela-
tions can be easily derived:

2 2
Ci=C— " oL
1+z21+22 I14+z14+22
2 2
C, = Ci — Coi 61)
14+z14+22 I14+z1+22

The generation rates for components A and A, depend solely
on z; and zp, the VDF mass fraction/flowrate models and the
IDEAS formulation can be rewritten in the way similar to the
above case, and is not elaborated here.

Fig. 4 shows the result of the IDEAS computation, and Fig.
5 shows a reaction network that achieves the maximum mass
fraction of the product Aj.

When the density is constant, the following holds:

C]+C2+2C3+2C4=C?:>2C—C]—CQZCO (62)

Combining with Eq. (61), we get
Cr . Cy

o 2T @

Again, the constant density AR attains higher product A,
mass fraction values. However, close to the ordinate axis, the
variable density AR contains points that are outside of the con-
stant density AR.

21 (63)

z,=1.0 [ostr |2 =0.0860 prR L2 =0.0407
2,=00 — 1z =0.00079—— z, =0.00082

0=2280 o=0226

Fig. 5. Reactor configuration for Van de Vusse reaction kinetics.
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4.3. Trambouze reaction kinetics revisited: no ideal gas
assumption

In this case, we consider that the ideal gas law is not appli-
cable and take into account the non-ideal behavior of the gases
involved.

There are a number of non-ideal thermodynamic property
models that can be used to capture non-ideal gas behavior. In
this case study, a generalized compressibility factor equation of
state is considered to capture the non-ideal behavior of all gases
involved as follows:

1 P

~ ZRT
where Z is the compressibility factor. This equation is suitable
for both pure substances and mixtures. Z could be determined
from experimental data, or other non-ideal thermodynamic mod-
els as well. Here, the Redlich-Kwong (R-K) equation is used:

_ RT _ a
C(1/0=b  (1/C?+b(1/0)
(65)

(64)

R — Kequation: P

where 1/C is the molar volume, a and b are two species-
dependent constants that can be estimated from the critical
temperature, critical pressure and operating temperature. Com-
bining the compressibility factor equation and the R-K equation,
we have:

s .  (aP—bPRT — b*P?
2 -z +< 277

abP?
- R3T3

The equation can be solved analytically for three roots.
If there are multiple real roots, then the largest value of Z
corresponds to the vapor phase, and the smallest value of Z
corresponds to the liquid phase [38].

To apply the R-K equation to mixtures, mixing rules are used
to average the constants a; and b; for each component in the
mixture as follows:

=0 (66

n n n
a= Z inxj(aiaj)o‘s ; b= inbi, 67)
i=1 j=1 i=1
and
R’T3? RT,;
a;i = 042748 ——=; b; = 0.08664 (68)
Pci 705 Pci

where T;; and P; are the critical temperature and pressure for
the ith species.

Since a mixture’s compressibility factor Z'is a function of all
x; and subsequently all z;, the generation rates for components
A1 and A3 no longer depend solely on z; and z3, buton all z;. The
VDF mass fraction/flowrate CSTR/PFR models and the IDEAS
formulation variables are given in the Appendix A for readers’
convenience. The critical temperatures and pressures are given
in Table 2. The three-dimensional (z1, z3, z4) VDF AR is shown
in Fig. 6, while its projection on the two-dimensional (z1, z3)
subspace is shown in Fig. 7.

From Fig. 7, it can be seen that the non-ideal gas AR is larger
than the ideal gas AR. This can be explained as follows: the

02 ‘
LY e
N
7 0.4 7_/2/
\ -
. 06
7

S

Fig. 6. Trambouze kinetics AR in 3D mass fraction space (no ideal gas assump-
tion) x: z1; y: 225 2 235

0.5
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0.45 | Ty
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0.35 |-
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Fig. 7. Projection of Trambouze kinetics AR to (z1, z3) mass fraction space (no
ideal gas assumption).

Table 2
Thermodynamic data

ith component Critical temperature T; (K) Critical pressure P.; (kPa)

Aq 544 5030
Ay 538 4950
A3 460 3500
Ay 548 5090

calculation of Z using the above thermodynamic data ranges
from 0.25 t0 0.65 for the considered T', P conditions (T = 550K,
P = 56 atm). In turn, this gives rise to a higher average total
molar concentration than the one arising under the ideal gas
assumption. As a result, more A3 is produced. The quantified
peak mass fractions of product A3 are 0.467 and 0.48 for the ideal
gas AR and the non-ideal gas AR, respectively. Fig. 8 shows a

z,=1.0 z,=0.163 2, =0.0

z, = g.(()) z,=0.418 2, =0.480

z, =0. z, =0.209 =0.227
o=0209 c=0.083

Fig. 8. Reactor configuration for Trambouze reaction kinetics without ideal gas
assumption.
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reaction network that achieves the maximum mass fraction of
the product As.

5. Discussion and conclusions

In this work, the VDF CSTR and PFR models are shown
to satisfy the requirements necessary for the application of the
IDEAS framework to VDF reactor network synthesis problems
(e.g. gas phase reactions). In addition, the Shrink-wrap algo-
rithm for AR construction is shown to be applicable to VDF
AR construction in mass fraction space. This conceptual devel-
opment allows the rigorous application of the Shrink-wrap AR
construction methodology in mass fraction space to VDF reac-
tor networks. The proposed methodology is illustrated on three
case studies, involving both ideal and non-ideal gas models.

Future research will focus on the synthesis of non-isothermal
VDF reactor networks. By incorporating energy balance equa-
tions in each reactor model, and demonstrating again the
applicability of IDEAS, non-isothermal VDF reactor network
synthesis problems can be addressed, albeit in higher dimen-
sional spaces than those used for isothermal problems.
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Appendix A. VDF models and IDEAS variables for
Trambouze reaction kinetics without ideal gas
assumption

The VDF mass fraction/flowrate CSTR/PFR models.
CSTR model

2D00) — 24G) = o()Mi(—ki — ks Cx1 — ks(Cx1)?) (69)
Zgo(i) - Zi3(i) = o(i))M3(2k2(Cx1)) (70)
Z40(i) - Zg(i) = a(i)M4(k3(Cx1)?) (71)
c- L7 72
= ZRT (72)
s .o  [aP—DbPRT —b*P? abP?
B_Z s — =0 (3
4
Z Zx,x](a a]) ; b= inb,- (74)
i=1 j=1 i=1
. z1() o 2z3(3) oz
"I 56 T 1+ z30) T 1+ 230)
(75)

xp=1—x1 —x3—x4, ifA@) =1, Vi=1,...,L (76)

PFR model

dz
dic‘rl = M(—k; — k2Cx1 — k3(Cx1)?);

Zlo=0 = 22(0),  Z1lo=ot) = 2700) (77)

dz
=2 = M32ky(Cxy)):

dc
. P 0y
Blo=0 = 23(0),  23le=0(;) = 23 (i) (78)
dza
- = Mu(k3(Cx1)?);
o
PN o 0
24l5=0 = Z4(l), Z4|O=O’(l) =24 (i) (79)
C= L P (80)
T ZRT
s ., [aP—bPRT —b*P? abP?
Z_zZ 4 RT3 - 73 =0 (81)

4 4
Z Zx,x j@ap)®™ | b= xib (82)
i=1 i=1

-4 _2z3 4
1423 Cl+z3 1423
ifAa(@) =0, Vi=1,...,L (84)

Xy = (83)

xo=1—x1 —x3 — x4,

The IDEAS formulation for a L-size finite dimensional approx-
imation program can be summarized as follows:

={d'm}). =0 ={da) L) M.
O={°m). L2 =W =) LA LI
0 = (%), ¢°Q), ... °W);
= 21,22, ... 2wy,
LD =120)20) K05 1T
= ('), d@.....d L)y
= (D). Z@)..... WD),

20 =146 Ao Aol
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