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bstract

In this work, the Infinite DimEnsionAl State-space (IDEAS) method and the associated Shrink-wrap algorithm are shown to be applicable to
ariable density fluid (VDF) reactor network synthesis (RNS). To this end, mathematical models for variable density fluid continuous stirred tank
eactors (CSTR) and plug flow reactors (PFR) are shown to give rise to linear operators within the IDEAS framework. Using IDEAS, a variety
f convex (linear) objective functions, such as maximization of concentration, yield, selectivity, or economic considerations like minimization of
otal reactor volume, or attainable region construction can be handled by linear programming. To demonstrate the effectiveness of the proposed

ethod, three reactor network synthesis case studies involving gas phase reactions are presented.
2006 Elsevier B.V. All rights reserved.

b
s
w
m
o
C
s
r
u
a
s
m
t
u
o
i
t
l
t

eywords: Reactor network synthesis; Variable density fluid reactor; IDEAS

. Introduction

Reactors and reactor networks are crucial to the success of a
hemical plant. Consequently, the analysis and design of reactors
nd reactor networks have been one of the focal points of Process
ystems Engineering (PSE). At the education level, Gavalas,
evenspiel, Froment and Bischoff, Fogler, Schmidt, and Rawl-

ngs and Ekerdt addressed reactor analysis and design, while
evenspiel, Fogler, and Rawlings and Ekerdt also addressed

eactor network analysis and design [1–6]. At the research level,
uperstructure optimization and attainable region (AR) con-
truction have been the main tools for reactor network synthesis
RNS).

The initial concept of superstructure dates back to the sixties,
hen Jackson studied a network of parallel PFRs interconnected
ith sidestreams [7]. A number of different superstructure mod-

ls were investigated and a variety of solution methodologies
or the resulting optimization problems were proposed from
hen on. Ravimohan incorporated CSTRs as an extension to

ackson’s effort [8]. Paynter and Haskins used an axial dis-
ersion model to avoid discrete decisions on the reactor types
f CSTR and PFR [9]. Ong optimized a serial CSTR network
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y applying dynamic programming [10]. Achenie and Biegler
tudied constant dispersion reactors and recycle reactors as net-
ork superstructures separately, they also employed macro- and
icromixing concepts to bound the performance index defined

n a reactor network [11–13]. A superstructure, composed of
STRs and PFRs approximated by a series of equal sized

ub-CSTRs, was presented by Kokossis and Floudas and the
esulting mixed-integer nonlinear program (MINLP) was solved
sing Generalized Benders Decomposition [14,15]. Kokossis
nd coworkers extended the methodology through the use of
tochastic optimization [16,17]. Hillestad presented an opti-
al control formulation of the reactor design problem, where

he resulting two-point boundary value problem was solved by
sing a steepest descend method [18]. Although superstructure
ptimization can handle variable density fluid reactors as well,
t continues to yield mathematical programming formulations
hat are nonlinear and nonconvex, and can thus only be solved
ocally. Furthermore any obtained solutions are only as rich as
he initially suggested superstructures.

The Attainable Region (AR) concept was first defined by
orn as the full set of product composition vectors that can
e reached by all possible steady-state reactor networks, using

nly the processes of reaction and mixing/splitting from a given
eed point [19]. Gavalas introduced a similar concept that he
oined an invariant manifold [1]. The AR concept was further
eveloped by Glasser et al. who employed a geometrically

mailto:vasilios@ucla.edu (V.I. Manousiouthakis)
dx.doi.org/10.1016/j.cej.2006.11.004
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Nomenclature

C total molar concentration (kmol/m3)
Ci ith component’s molar concentration (kmol/m3)
f molar flowrate (kmol/s)
fi ith component’s molar flowrate (kmol/s)
F volumetric flowrate (m3/s)
Mi ith component’s molecular weight (kg/kmol)
M̄ average molecular weight (kg/kmol)
P operating pressure (atm)
q mass flowrate (kg/s)
ri ith component’s generation rate (kmol/m3 s)
T operating temperature (K)
u input vector of an information map
u1 extensive variables of input vector of an informa-

tion map
u2 intensive/design variables of input vector of an

information map
V reactor volume (m3)
xi ith component’s molar fraction
y output vector of an information map
y1 extensive variables of output vector of an infor-

mation map
y2 intensive/design variables of output vector of an

information map
zi ith component’s mass fraction

Greek letters
λ reactor type identifier, 0 for PFR and 1 for CSTR
Φ input–output information map from u to y repre-

senting a process model
Φ1 component of Φ mapping from u to y1
Φ2 component of Φ mapping from u to y2
σ reactor design parameter, defined as V/q (m3 s/kg)
(·)in property at the inlet of a unit
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solely mixing and splitting operations. Since the intensive prop-
(·) property at the outlet of a unit

ased construction [20,21]. Much of their work focuses on
eometric interpretations of reaction and mixing and does
ot employ any assumption on the structure of the reactor
etwork [22–24]. Although AR analysis has been successful in
uantifying fundamental limitations of reactor networks, it is
nly applicable to two- or three-dimensional problems and has
nly been developed for constant density fluids [13,25–29].

In recent years, research has focused on the computational
onstruction of the AR using linear programming (LP) formula-
ions. The IDEAS framework was first proposed by Wilson and

anousiouthakis [30], and then applied to a wide range of pro-
ess network synthesis problems [31–35]. IDEAS gives rise to
n infinite linear programming (ILP) formulation. The optimal
alue of this ILP is approximated through solutions of a sequence

f finite linear programs of ever increasing size. IDEAS has been
pplied to the construction of the true AR by Burri et al. [31].
auchali et al. also employed an alternative IDEAS formulism

e
k
n
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o seek the extension of AR candidate sets obtained with tradi-
ional geometrically based construction [36]. In doing so, they
pproximated PFRs with a series of CSTRs. Manousiouthakis
t al. also employed a superset guaranteed to contain the true
R [37]. They presented and proved a necessary and sufficient

ondition for a point in concentration space to belong to the AR,
nd proposed a so-called Shrink-wrap algorithm for the approxi-
ation of the true AR to an arbitrary degree of accuracy, through

rogressive elimination of extreme grid points not satisfying the
bove necessary and sufficient condition.

All the aforementioned AR construction works employ the
onstant density fluid (CDF) assumption. In this work, we
resent, for the first time, a methodology for the construction
f the true AR of reactor networks that consist of variable den-
ity fluid (VDF) CSTR and PFR models. This methodology is
ased on the IDEAS approach to process synthesis. In particular,
t is shown that appropriately defined input–output information

aps for VDF CSTR/PFR models possess the decomposition
nd linear input–output properties needed for application of
he IDEAS framework. Furthermore, it is established that the
DEAS based Shrink-wrap algorithm is applicable to the VDF
R construction problem when the latter is formulated in mass

raction space. AR construction for three, gas phase, reactor
etworks with isobaric and isothermal conditions is employed
o illustrate the applicability of the IDEAS framework to
DF RNS.

. The IDEAS approach

.1. Preliminaries, linearity of the IDEAS framework

The IDEAS framework decomposes the overall process net-
ork into two parts: the distribution network (DN) where all
ossible mixing, splitting, recycling and bypassing of process
treams occur; and the process operator (OP) where the action
f process unit operations is quantified. Stream information
n IDEAS is stored in a way that stream extensive (quantity)
roperties (e.g. flowrates) and stream intensive (quality) proper-
ies (such as concentrations, molar enthalpies, molar fractions,
tc.) are dealt with separately. The key development behind
DEAS is that the domain and range of the map quantifying
rocess unit operations in the OP lie in infinite (rather than
nite) dimensional spaces. Process operators in traditional rep-
esentations consider intensive and extensive properties, and
esign parameters to be variable. In the IDEAS representa-
ion, the OP fixes intensive properties and design parameters
t any combination of values they can possibly assume. To
ach of such combination, a vector of extensive variables is
ssigned, thus giving rise to a sequence, of such extensive
ariable vectors, belonging to an infinite dimensional space.
urthermore, when the intensive properties and design parame-

ers are fixed, the extensive property input–output map is linear,
hus giving rise to a linear OP. In addition, the DN contains
rties concerning any stream leaving or entering the DN are
nown, the resulting balance equations are linear and infinite in
umber.
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The linearity of the OP and DN gives rise to a lin-
ar and infinite dimensional feasible region of the IDEAS
epresentation. Consequently, when the objective function is
onvex, all locally optimal solutions of the resulting process
etwork synthesis problems are guaranteed to be globally
ptimal.

To elaborate on how the linearity of the OP is achieved, con-
ider a general input/output information map Φ describing a
rocess operation:

: u =
[

u1

u2

]
−→ y =

[
y1

y2

]
=
[

Φ1(u1, u2)

Φ2(u1, u2)

]
(1)

here u ∈ D = {u = [ u1 u2 ]T ∈ Ru : �(u2)u1 = 0}; y =
y1 y2 ]T ∈ Ry; u1 (u2) and y1 (y2) are extensive (inten-
ive/design) variables of the map’s input and output,
espectively; �(u2) is a linear operator for fixed u2; and Φ1
nd Φ2 are viewed as components of Φ mapping u to y1 and y2,
espectively. Usually �(u2) = 0, thus allowing u to be free to
ove in the whole Ru.
If the following two properties are satisfied by the afore-

entioned map Φ, then the linearity of the OP of the chemical
rocess under consideration within the IDEAS framework can
e achieved:

1st property: y2 = Φ2(u1, u2) = Φ2(u2), i.e. there is no direct
dependence between u1 and y2.
2nd property: y1 = Φ1(u1, u2) = Φ1(u2) u1 where Φ1(u2) is
a linear map for fixed u2.

Indeed, properties 1 and 2 ensure that as u1 varies, y2 is not
ffected since it is only a function of u2, and y1 is a (possibly u2
ependent) linear function of u1. Combined with the definition
f D, this implies that if this process operation is part of a net-
ork optimization problem in whichu2 is kept fixed, then it gives

ise to linear constraints. To take into account all possible values
f u2, the network size is then expanded to include an infinite
umber of possible unit operations each of which corresponds
o a possible value of u2. Consequently, the OP can be modelled
y an infinite number of units, each of which has prior speci-
ed values of u2 = ū2, which in return specifies y2 = ȳ2 from
2 = Φ2(u2), and generates linear constraints y1 = Φ1(ū2) u1,
(ū2) u1 = 0.
To demonstrate, consider a constant density fluid CSTR in

hich a 2nd order reaction: 2A1 → A2, is carried out with
eaction rate coefficient k. The associated model is

out
1 − Cin

1 = −2τk(Cout
1 )2 (2)

out
2 − Cin

2 = τk(Cout
1 )2 (3)

= τF (4)

here F is the volumetric flowrate in and out of the reactor
3 in out in out
m /s); C1 (C1 ) and C2 (C2 ) are the molar concentrations

fA1 andA2 at the reactor inlet (outlet), respectively (kmol/m3);
the reactor volume (m3); and τ is the reactor residence

ime (s).
The linearity of the OP can be attained in a number of ways.

Φ

Φ

e
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First, Φ, u and y can be defined as

: u → y, u =

⎡
⎢⎣

u1

−−
u2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F

−−
Cin

1

Cin
2

τ

⎤
⎥⎥⎥⎥⎥⎥⎦

;

=

⎡
⎢⎣

y1

−−
y2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F

V

−−
Cout

1

Cout
2

⎤
⎥⎥⎥⎥⎥⎥⎦

here u ∈ R4, �(u2) = 0, y ∈ R4. It is easy to prove that Φ

ossesses the aforementioned two properties needed for OP
inearity. Indeed,

2 : u2
(2)(3)→ y2 = Φ2(u2)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 +
√

1 + 8τkCin
1

4 τk

Cin
2 + τk

⎛
⎝−1 +

√
1 + 8τkCin

1

4τk

⎞
⎠

2

⎤
⎥⎥⎥⎥⎥⎥⎦

and thus Φ2 satisfies property 1. Furthermore,

1(u2) �
[

1 τ
]T : u1

(4)→ y1

s a linear operator for any fixed u2, thus satisfying property 2.
Another way Φ, u and y can be defined is as follows:

: u → y, u =

⎡
⎢⎣

u1

−−
u2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F

−−
Cout

1

Cout
2

Cin
1

⎤
⎥⎥⎥⎥⎥⎥⎦

;

=

⎡
⎢⎣

y1

−−
y2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

F

V

−−
Cin

2

τ

⎤
⎥⎥⎥⎥⎥⎥⎦

here u ∈ R4, �(u2) = 0, y ∈ R4. Thus

2 : u2
(2)(3)→ y2 = Φ2(u2) =

⎡
⎢⎢⎣

Cout
2 − 1

2
(Cin

1 − Cout
1 )

Cin
1 − Cout

1

2k(Cout
1 )2

⎤
⎥⎥⎦ ;

[ in out ]T
1(u2) �
[

1 τ
]T = 1

C1 − C1

2k(Cout
1 )2

: u1
(4)→ y1

2 satisfies property 1, and for any fixed u2, τ is fixed, which
nsures Φ1(u2) is a linear operator, thus satisfying property 2.
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Finally, another way Φ, u and y can be defined is by first
ewriting the CSTR model as

Cout
1 − f in

1 = −2Vk(Cout
1 )2 (5)

Cout
2 − f in

2 = Vk(Cout
1 )2 (6)

here f in
1 and f in

2 are the inlet molar flowrates of A1 and A2,
espectively (kmol/s). Then,

: u → y, u =

⎡
⎢⎣

u1

−−
u2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f in
1

f in
2

F

V

−−
Cout

1

Cout
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; y = [y1] = [F ]

here u ∈ D = {u ∈ R6 : �(u2)u1 = 0}; y = y1 ∈ R1;

(u2) =
[

−1 0 Cout
1 2k(Cout

1 )2

0 −1 Cout
2 −k(Cout

1 )2

]

s a result, property 1 is automatically satisfied since there is
o need to define a Φ2. Similarly, property 2 is satisfied since
he map Φ1(u2) �

[
0 0 1 0

]
: u1 → y1 is linear.

Different ways of attaining linearity of the OP will result in
ifferent IDEAS optimization formulations with different com-
utational characteristics.

.2. Unit operation models for variable density fluid
eactors

In this section, it is shown that the two properties, shown in
ection 2.1 to lead to OP linearity, are satisfied by steady state,

sobaric, isothermal, VDF CSTR and PFR models.

.2.1. Variable density fluid CSTR models
Molar model. Consider a VDF CSTR containing n com-

onents whose generation rates are expressed in molar
oncentrations. A typical model for this unit operation is
xpressed in terms of molar flowrates and molar fractions as
ollows:

outxout
i − f inxin

i = Vri({Cout
k }nk=1), ∀ i = 1, . . . , n − 1 (7)

out − f in = V

n∑
i=1

ri({Cout
k }nk=1) (8)

out
k = Cout

k ({xout
j }n−1

j=1 , T, P), ∀ k = 1, . . . , n (9)

here f in and f out are the molar flowrates at the reactor inlet
nd outlet, respectively; xin

i and xout
i are the ith component’s

olar fractions at the reactor inlet and outlet, respectively; and
i is the ith component’s molar generation rate per unit vol-

me. Eqs. (7) and (8) are component and total balances, while
q. (9) says that each component concentration is a function of

emperature, pressure and molar fractions. Chemical thermody-
amics provides several models that can be brought in the form

w
t
p
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f Eq. (9) for both gas and liquid phase mixtures. For example,
f a compressibility factor (Z) model is used, one could write
k = xk(P/RT )(1/Z), where R is the gas constant; Z is a func-

ion of {xj}n−1
j=1 , T, P . In the simplest example of an ideal gas

hase mixture, we then have Z = 1.
By defining two parameters: ζ = V/f in; η = f out/f in, the

odel can be rewritten as

xout
i − xin

i = ζri({Cout
k }nk=1), ∀ i = 1, . . . , n − 1 (10)

− 1 = ζ

n∑
i=1

ri({Cout
k }nk=1) (11)

out
k = Cout

k ({xout
j }n−1

j=1 , T, P), ∀ k = 1, . . . , n (12)

out = ηf in (13)

= ζf in (14)

he above equations can be used to define an input–output infor-
ation map Φ : u → y as follows:

=

⎡
⎢⎣

u1

−−
u2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f in

−−
xin

1

xin
2
...

xin
n−1

ζ

T

P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; y =

⎡
⎢⎣

y1

−−
y2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f out

V

−−
xout

1

xout
2
...

xout
n−1

η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

∈ Rn+3, �(u2) = 0, y ∈ Rn+2.
The aforementioned map satisfies properties 1 and 2 outlined

arlier and therefore the IDEAS approach is applicable to this
DF CSTR model. Indeed, Φ2 and Φ1(u2) take the form:

2 : u2
(10),(11),(12)→ y2;

1(u2) �
[
η(u2) ζ

]T : u1
(13),(14)→ y1

nce again, when u2 is fixed, η(u2) is fixed and Φ1 becomes a
inear operator.

Mass model. Taking into account the fact that no matter what
eactions happen in a reactor, the total mass flowrate q will not
hange because of the mass conservation principle (i.e. qin =
out = q), an alternative VDF CSTR model can be developed in
erms of mass flowrates and mass fractions as follows:

zout
i − qzin

i = VMiri({Cout
k }nk=1), ∀ i = 1, . . . , n − 1 (16)

out = Cout({zout}n−1, T, P), ∀ k = 1, . . . , n (17)
k k j j=1

here zin
i and zout

i are the ith component’s mass fractions at
he reactor inlet and outlet, respectively; and Mi is the ith com-
onent’s molecular weight. Recall the following relation for a
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ixture:

¯ =
n∑

j=1

xjMj = 1∑n
j=1(zj/Mj)

; xi = zi
M̄

Mi

(18)

here M̄ is the average molecular weight. Thus, Eq. (17) can be
btained by combining Eqs. (9) and (18). Then by defining the
esign parameter σ = V/q, the model becomes:

out
i − zin

i = σMiri({Cout
k }nk=1), ∀ i = 1, . . . , n − 1 (19)

out
k = Cout

k ({zout
j }n−1

j=1 , T, P), ∀ k = 1, . . . , n (20)

= σ q (21)

n input–output information map Φ : u → y can then be
efined as

=

⎡
⎢⎣

u1

−−
u2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q

−−
zin

1

zin
2
...

zin
n−1

σ

T

P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; y =

⎡
⎢⎣

y1

−−
y2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q

V

−−
zout

1

zout
2
...

zout
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

here u ∈ Rn+3, �(u2) = 0, y ∈ Rn+1. Φ2 and Φ1(u2) become:

2 : u2
(19),(20)→ y2; Φ1(u2) �

[
1 σ

]T : u1
(21)→ y1

.2.2. Variable density fluid PFR models
Different from CSTR models which include a set of non-

inear algebraic equations, PFR models consist of a set of
rdinary differential equations. As a result, besides defining
arameters similarly to CSTR models, corresponding differen-
ial elements need to be defined as well.

Molar model. For the molar flowrate/fraction PFR model,
¯ = v/f in and η̄ = f/f in are defined such that the differential
lement d(fxi)/dv becomes d(η̄xi)dζ̄. Thus the model can be
ritten as

d(η̄xi)

dζ̄
= ri({Ck}nk=1), ∀ i = 1, . . . , n − 1 (23)

dη̄

dζ̄
=

n∑
i=1

ri({Ck}nk=1) (24)

k = Ck({xj}n−1
j=1 , T, P), ∀ k = 1, . . . , n (25)

¯ = 0 ⇒ η̄ = 1; xi = xin
i , ∀ i = 1, . . . , n − 1 (26)

¯ = ζ ⇒ η̄ = η; xi = xout
i , ∀ i = 1, . . . , n − 1 (27)

out = ηf in (28)
= ζf in (29)

o depict an input–output information map Φ : u → y for
DEAS, u and y can be defined the same way as Eq. (15), and

z

e
s
t

gineering Journal 129 (2007) 91–103 95

2 and Φ1(u2) take the form:

2 : u2
(23),(24),(25),(26),(27)→ y2;

1(u2) �
[
η(u2) ζ

]T : u1
(28),(29)→ y1

Mass model. For the mass flowrate/fraction PFR model,
¯ = v/q is defined such that the differential element d(qzi)/dv

ecomes dzi/dσ̄. The model can then be written as

dzi

dσ̄
= Miri({Ck}nk=1), ∀ i = 1, . . . , n − 1 (30)

k = Ck({zj}n−1
j=1 , T, P), ∀ k = 1, . . . , n (31)

¯ = 0 ⇒ zi = zin
i , ∀ i = 1, . . . , n − 1 (32)

¯ = σ ⇒ zi = zout
i , ∀ i = 1, . . . , n − 1 (33)

= σq (34)

and y can be defined the same way as Eq. (22), and Φ2 and
1(u2) become:

2 : u2
(30),(31),(32),(33)→ y2; Φ1(u2) �

[
1 σ

]T : u1
(34)→ y1

The above verifies the claim that properties leading to OP
inearity are satisfied by steady state, isobaric, isothermal, VDF
STR and PFR models. Whether the molar or mass based mod-
ls are employed is the designer’s choice. For example, when
eaction rates are described in terms of partial pressures, the
olar flowrate/fraction models may be preferable. In this work,

he mass flowrate/fraction models for both VDF CSTRs and
FRs are used.

It is worth pointing out here that the above models are general
nd thus suitable for handling the situation where the constant
ensity assumption is employed as well. For example, consider
he CDF CSTR model:

out
i − Cin

i = V

F in ri({Ck}nk=1), ∀ i = 1, . . . , n (35)

nd let F in (Fout), ρin (ρout) be volumetric flowrate and mass
ensity at reactor inlet (outlet), respectively. Then, by mul-
iplying Mi/ρ

in on both sides, and taking into account that:
inρin = Foutρout = g; Cout

i Mi/ρ
in = ρout zout

i /ρin = zout
i and

in
i Mi/ρ

in = zin
i , one gets

out
i − zin

i = V

gin Miri({Ck}nk=1), ∀ i = 1, . . . , n (36)

hich is Eq. (19).

.3. IDEAS representation for VDF RNS

.3.1. Variable definitions
Fig. 1 illustrates the IDEAS representation for VDF reac-

or networks with NI external (network) inlet streams and NO
xternal (network) outlet streams.

Each network inlet stream is represented by qI(j) and

I(j) ∀ j = 1, . . . , NI, where the scalar qI(j) represents the
xtensive property (mass flowrate) of the jth network inlet
tream and the vector zI(j) represents the intensive proper-
ies (mass fractions) of the jth network inlet stream defined as
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Table 1
Variable and parameter definitions

NI Number of network(external) inlet streams
NO Number of network(external) outlet streams
zI
k
(j) kth component mass fraction in the jth network inlet

k = 1, n − 1; j = 1, NI

zO
k

(i) kth component mass fraction in the ith network outlet
k = 1, n − 1; i = 1, NO

zÎ
k
(i) kth component mass fraction in the ith OP inlet k = 1,

n − 1; i = 1, ∞
zÔ
k

(j) kth component mass fraction in the jth OP outlet
k = 1, n − 1; j = 1, ∞

qI(j) jth network inlet mass flowrate j = 1, NI

qO(i) ith network outlet mass flowrate i = 1, NO

qÎ(i) ith OP (reactor) inlet mass flowrate i = 1, ∞
qÔ(j) jth OP (reactor) outlet mass flowrate i = 1, ∞
qOI(ij) Flowrate from the jth network inlet to the ith network

outlet i = 1, NO; j = 1, NI

qÎI(ij) Flowrate from the jth network inlet to the ith OP inlet
i = 1, ∞; j = 1, NI

qOÔ(ij) Flowrate from the jth OP outlet to the ith network outlet
i = 1, NO; j = 1, ∞

qÎÔ(ij) Flowrate from the jth OP outlet to the ith OP inlet
i = 1, ∞; j = 1, ∞

u(l) Input of the information map for the lth process unit
l = 1, ∞

y(l) Output of the information map for the lth process unit

z

∀

(

(

q

q

qOI ≥ 0; qÎI ≥ 0; qOÔ ≥ 0; qÎÔ ≥ 0 (46)

where sequences (zO)low ((zO)upp) and (qO)low ((qO)upp) are
lower (upper) bounds of sequences zO and qO, respectively. Eqs.
Fig. 1. IDEAS representation for process networks.

I(j) = [ zI
1(j) zI

2(j) · · · zI
n−1(j)

]T
. The sequence of net-

ork inlet stream extensive and intensive properties are defined
s qI and zI:

I = {qI(1), qI(2), . . . , qI(NI)};
I = {zI(1), zI(2), . . . , zI(NI)}

Similarly, the following property sequences are defined: qO

nd zO for the network outlet; qÎ and zÎ for the OP inlet; qÔ and
Ô for the OP outlet and four sets of cross-flow streams each of
hich is represented by a flowrate with destination and origin:

OI, qÎI, qOÔ, qÎÔ are defined as well (Table 1). Each process
nit in the OP is represented by a map Φ(l) : u(l) → y(l)∀ l =
, . . . ,∞.

.3.2. Optimization formulation
Under the steady-state, isobaric and isothermal assumptions,

he IDEAS optimization formulation for VDF RNS can then be
ritten as

= inf(qI,qO,qÎ,qÔ,qOI,qÎI,qOÔ,qÎÔ)OBJ (37)

s.t.

I(j) =
NO∑
i=1

qOI(i, j) +
∞∑
i=1

qÎI(i, j), ∀ j = 1, . . . , NI (38)

O(i) =
NI∑

j=1

qOI(i, j) +
∞∑

j=1

qOÔ(i, j), ∀ i = 1, . . . , NO (39)

Î(i) =
NI∑

qÎI(i, j) +
∞∑

qÎÔ(i, j), ∀ i = 1, . . . , ∞ (40)

j=1 j=1

Ô(j) =
NO∑
i=1

qOÔ(i, j) +
∞∑
i=1

qÎÔ(i, j), ∀ j = 1, . . . , ∞ (41)

(
a
t
f

l = 1, ∞

Î
k(i)qÎ(i) =

NI∑
j=1

zI
k(j)qÎI(i, j) +

∞∑
j=1

zÔ
k (j)qÎÔ(i, j),

k = 1, . . . , n − 1; ∀ i = 1, . . . ,∞ (42)

qO(i))low ≤ qO(i) ≤ (qO(i))
upp

, ∀ i = 1, . . . , NO (43)

zO
k (i))lowqO(i) ≤

NI∑
j=1

zI
k(j)qOI(i, j) +

∞∑
j=1

zÔ
k (j) qOÔ(i, j)

≤ (zO(i))uppqO(i), ∀ k = 1, . . . , n − 1;

∀ i = 1, . . . , NO (44)

Ô(i) = qÎ(i), ∀ i = 1, . . . ,∞ (45)

I ≥ 0; qO ≥ 0; ; qÎ ≥ 0; qÔ ≥ 0;
38)–(41) correspond to total mass balances in the DN; Eqs. (42)
nd (44) represent component balances in the DN. In this work,
he linearity of the OP is achieved by defining Φ : u → y as
ollows:
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(l) =

⎡
⎢⎣

u1(l)

−−
u2(l)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qÎ(l)

−−
zÎ

1(l)

zÎ
2(l)
...

zÎ
n−1(l)

σ(l)

λ(l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(l) =

⎡
⎢⎣

y1(l)

−−
y2(l)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qÔ(l)

V (l)

−−
zÔ

1 (l)

zÔ
2 (l)
...

zÔ
n−1(l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ∀ l = 1, . . . , ∞ (47)

here u(l) ∈ Rn+2, �(u2(l)) = 0, λ is allowed only to be 0 or
and is used as a technology flag to identify the reactor type

i.e. 0 for PFR and 1 for CSTR), y ∈ Rn+1. Correspondingly,
2(l) : u2(l) → y2(l) becomes

dzk

dσ̄
= Mkrk({zj}n−1

j=1 , T, P), ∀ k = 1, . . . , n − 1;

k|σ̄=0 = zÎ
k(l), zk|σ̄=σ(l) = zÔ

k (l), ∀ k = 1, . . . , n − 1

f λ(l) = 0 (48)

Ô
k (l) − zÎ

k(l) = σ(l)Mkrk({zÔ
j (l)}n−1

j=1 , T, P),

k = 1, . . . , n − 1, if λ(l) = 1 (49)

nd Φ1(l) : u1(l) → y1(l) takes the form: [ 1 σ(l) ]T. The pro-
ess is elaborated as the following: by fixing u2 at any possible
ondition, and by calculating y2 as Φ2(u2), one then creates a
inear OP that maps an infinite number of variables u1 through
he linear map Φ1(u2) to an infinite number of variables y1.
his linear OP is represented by Eq. (45), since reactor volumes
V (l)}∞l=1 do not show up in the constrains and can be substituted
y V (l) = σ(l)q(l) if they are in the OBJ. It is worth pointing out
hat components of sequence zÎ could be identical, and so does
Ô. Indeed, it is easy to find out that there could be up to infinite
umber of same mass fraction vector as σ varies from 0 to ∞.

A convex (linear) functional is considered as an objective for

he IDEAS optimization. A variety of objectives can be real-
zed by appropriate selection of the cost coefficients, including

aximization of concentration, yield, selectivity or economic
onsiderations such as minimization of total reactor volume.

b
c
r
r
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. VDF AR construction

The VDF RNS AR problem can be stated as follows: given
eaction kinetic information, what is the set of points in com-
osition (molar concentration, molar fraction or mass fraction)
pace that can be attained as product compositions of a VDF
eactor network with a given feed.

.1. IDEAS adaptation to VDF AR construction

Considering an isobaric, isothermal reactor network with a
ingle inlet and a single outlet (i.e. NI = NO = 1), a point on the
R boundary can be found by formulating an objective function

hat maximizes the mass fraction of the desired product (i.e. k̃th
omponent) in the network outlet stream, while fixing the mass
ractions of concerned component(s) (i.e. use K̃ to represent the
nion of the indices of these components) in the outlet stream
t their coordinates’ value(s). Apparently k̃ 
∈ K̃ ⊂ {i}ni=1. Then
he total AR boundary can be constructed in this pointwise man-
er. The objective function is formulated as

BJ = zO
k̃

(1) (50)

In addition, the lower/upper bounds (zO(1))low, (zO(1))upp are
elected to be

zO
k (1))low = (zO

k (1))upp = ˜zO
k (1), ∀ k ∈ K̃ (51)

here ˜zO
k (1) is the fixed value of zO

k (1) in the network outlet.
The aforementioned IDEAS optimization formulation is an

nfinite dimensional linear program, whose solution can be
pproximated by the optimal solutions of a series of finite linear
rograms of increasing size. There are plenty of ways to gen-
rate finite dimensional programs. To show how this is done,
onsider the CSTR example of Section 2.1 and the second way
f achieving linearity of the OP. At the outset, we presume that
e know lower/upper bounds of Cout

1 , Cout
2 , Cin

1 . These bounds
ay be crude, or may be derived from brief analysis of the

inetics. By introducing a uniform grid in all three dimensions
Cout

1 , Cout
2 , Cin

1 ) and using Eqs. (2) and (3) to calculate Cin
2 , τ,

e can generate a finite number of feasible CSTRs and corre-
ponding OP inlet/outlet streams.

.2. Applicability of the Shrink-wrap algorithm for VDF AR
onstruction

The IDEAS formulation for reactor network synthesis of vari-
ble density flow in terms of mass flowrates and component
ass fractions (Eqs. (37)–(46)) is analogous to that formu-

ated by Manousiouthakis et al. for constant density reactor
etwork synthesis, in terms of volumetric flowrates and com-
onent molar concentrations [37]. Indeed, using the definitions
f (in)active reactors, isolated subnetworks and well-connected
etworks/subnetworks, and following the analysis in Ref. [37]

y replacing volumetric flowrates and component molar con-
entrations with mass flowrates and component mass fractions,
espectively, one can readily obtain a similar theorem as Theo-
em 2 in Ref. [37], which is restated as follows.
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heorem 1. A necessary and sufficient condition for a point in
ass fraction space to be in the VDF AR is that it must belong

o the convex hull, defined by the feed point mass fraction vector
nd those outlet mass fraction vectors corresponding to active
eactors that do not belong to an isolated reactor subnetwork,
nd whose inlet mass fraction vectors are also in the convex
ull.

s a result, the Shrink-wrap algorithm is applicable to VDF
R construction problems. This is a significant development
hich allows identification of the VDF AR without solution
f large finite linear programs. It is important to emphasize at
his point that extension of the Shrink-wrap algorithm to the
DF AR construction problem is not possible for mole based

eactor models. As discussed earlier, mass flowrate/fraction and
olar flowrate/fraction models are possible for VDF CSTR’s

nd PFR’s. Both are eligible to be employed in the IDEAS
ramework for reactor network synthesis, and lead to infinite
inear programming formulations. However, since the molar
owrate through a VDF reactor changes, Eq. (45) is altered as
ollows:

Ô(i) = η(i)f Î(i), ∀ i = 1, . . . ,∞ (52)

Because of this change, the analysis in Ref. [37] cannot
e carried through when replacing volumetric flowrates and
omponent molar concentrations with molar flowrates and com-
onent molar fractions, respectively. Fortunately, however the
se of mass flowrates/fractions permits the use of the Shrink-
rap algorithm in quantifying the VDF AR.

.3. Reactor network for desired product composition

In the ILP optimization methodology, identification of each
R boundary point is carried out simultaneously with the

dentification of the reactor network that delivers this point
s its exit. The composition of AR interior points can then
e reached through mixing of boundary points with the feed.
owever for the Shrink-wrap algorithm, these reactor networks

re not identified as the AR is constructed (Shrunk) from a
uperset. Nevertheless, once the AR is identified, a reactor net-
ork can be identified that delivers any point in the AR as its

xit.
Let the CSTR (PFR) forward trajectories from the feed be

enoted as T1(Ť1), and the convex hull defined by T1 and Ť1 be
enoted as H1 (a closed hull). In addition, consider a desired
roduct composition point in the AR, and let the CSTR (PFR)
ackward trajectories from this point, excluding the point itself,
e denoted as T2(Ť2). Let also the convex hull defined by H1
nd the desired composition point be denoted as H2 (a closed
ull). If the desired composition point belongs to T1(Ť1), then
CSTR (PFR) from the feed can be used to deliver the desired

omposition as its exit. If the desired composition point does
ot belong to T1 and Ť1, but belongs to H1, then a reactor net-

ork, consisting of one or two reactors (a CSTR and/or a PFR

rom the feed), can be used; the desired composition can be
btained through mixing of the feed and product(s) of the reac-
or(s). If the desired composition point does not belong to H1,

t
p
i
p

gineering Journal 129 (2007) 91–103

ut T2(Ť2) has a point of intersection with H2, then the compo-
ition of any intersection point of T2(Ť2) and H2 can be used as
he feed of a CSTR (PFR) which delivers the desired composi-
ion as its exit, and this composition can be obtained by mixing
he feed, product(s) of a CSTR and/or a PFR from the feed
nd the desired composition. The cross-flowrates of the reactor
etwork can be obtained from the solution of balance equa-
ions (38)–(46) with known compositions, network inlet/outlet
owrates and finite reactors. A feasible solution of this prob-

em is always guaranteed, as shown in Ref. [37], through the
se of mixing ratios and subsequent identification of the reac-
or flowrates through solution of a set of linear independent
quations, with equal number of unknowns and equations. If
2 and Ť2 do not intersect with H2, the following can be used

o identify a feasible reactor network. Let PU be the composi-
ion point union containing all extreme and interior grid points
f the AR obtained from the Shrink-wrap algorithm exclud-
ng composition grid points contained by H2. For the current
U:

1) Select a composition grid point and let the convex hull
defined by the selected point and H2 be denoted as H3 (a
closed hull). If H3 has no point of intersection with T2 and
Ť2, a new PU is generated by eliminating the selected point
from the current PU and starting over.

2) Otherwise, let the backward CSTR (PFR) trajectories at the
composition of the selected point, excluding the selected
point itself, be denoted as T3(Ť3). If either T3 or Ť3 has
no point of intersection with H3, a new PU is generated
by eliminating the selected point from the current PU and
starting over.

3) Otherwise, any intersection point of H3 and T2(Ť2) can be
used as the feed of a CSTR (PFR) which delivers the desired
composition as its exit; and any intersection point of H3
and T3(Ť3) can be used as the feed of another CSTR (PFR)
which delivers the composition of the selected point as its
exit. The selected intersection points of H3 and T2(Ť2), and
H3 and T3(Ť3) can be obtained by mixing the feed, prod-
uct(s) of a CSTR and/or a PFR from the feed, the desired
composition and the composition of the selected grid point.
As before, the cross-flowrates of the reactor network can be
obtained from the solution of balance equations (38)–(46)
with known compositions, network inlet/outlet flowrates
and finite reactors.

If selecting one point at a time from the PU does not suc-
eed, then selecting two (or more) points at a time can be
sed, and the process can be continued until a reactor network
hat delivers the desired composition as its exit is identified.
rom the Shrink-wrap algorithm, it is guaranteed that a reactor
etwork with a finite number of reactors can be identified to
eliver any composition point in the AR as its exit, although it
s possible that, all extreme points defining the AR may need

o be used. However, practical experience suggests that the
rocedure succeeds in its early stages, and this is illustrated
n the case studies. It is also important to point out that the
rocedure is applicable to both constant density and variable
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ensity AR’s, in concentration space and mass fraction space,
espectively.

. Case studies

In this section, IDEAS is employed to identify the VDF AR
or three gas phase reaction case studies. Reactors are presumed
o be isothermal and isobaric. All computational efforts are car-
ied out on a Linux machine with an AMD 2400+ MP cpu
unning at 2 GHz clock speed.

.1. Trambouze reaction kinetics

Consider the following Trambouze-like gas phase reaction
athway taking place in an isothermal, isobaric reactor network,
here P = 56 atm, T = 550 K. The feed is pure reactant A1,

nd we seek to create the AR for components A1 and A3 in mass
raction space under the condition that gases are considered to
e ideal.

1(gas)
k1→ A2(gas) (zeroth order, k1 = 0.025 kmol/(m3 s)),

1
k2→ 2A3 (gas, product) (first order, k2 = 0.2(1/s)),

1
k3→ A4(gas) (second order, k3 = 0.4 m3/(kmol s))

Molecular weight M1 = 40 kg/kmol. The component gener-
tion rates for this reaction scheme are

1 = −k1 − k2C1 − k3C
2
1; r2 = k1;

3 = 2k2C1; r4 = k3C
2
1

irst we derive the relations of component concentrations and
ass fractions (i.e. Eqs. (20) and (31)). Since

1 = Cx1, C3 = Cx3; x1 = M̄z1
1

M1
, x3 = M̄z3

1

M3
;

¯ = 1

(z1/M1) + (z2/M2) + (z3/M3) + (z4/M4)
;

1 = M2 = M4 = 2M3, z1 + z2 + z3 + z4 = 1

t then holds:

1 = C
z1

1 + z3
; C3 = C

2z3

1 + z3
(53)

here C, M̄ are the total concentration and the average molec-
lar weight, respectively, and xi and zi are molar fraction
nd mass fraction for the ith component, respectively. In
ddition, based on the isothermal, isobaric and ideal gas assump-
ions, C = P/RT = C◦ = 1.237 kmol/m3. As a result, Eq. (53)

ecome:

1 = C◦ z1

1 + z3
; C3 = C◦ 2z3

1 + z3
(54)

Since the generation rates for components A1 and A3 depend
olely on z1 and z3, the VDF mass fraction/flowrate CSTR/PFR
odels for this case take the form.

a
d
f
u

z
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CSTR model

Ô
1 (i) − zÎ

1(i) = σ(i)M1

⎛
⎝−k1 − k2C

◦ zÔ
1 (i)

1 + zÔ
3 (i)

− k3

(
C◦ zÔ

1 (i)

1 + zÔ
3 (i)

)2
⎞
⎠ (55)

Ô
3 (i) − zÎ

3(i) = σ(i)M3

(
2k2C

◦ zÔ
1 (i)

1 + zÔ
3 (i)

)
,

f λ(i) = 1, ∀ i = 1, . . . , L (56)

PFR model

dz1

dσ̄
= M1

(
−k1 − k2C

◦ z1

1 + z3
− k3

(
C◦ z1

1 + z3

)2
)

;

1|σ̄=0 = zÎ
1(i), z1|σ̄=σ(i) = zÔ

1 (i) (57)

dz3

dσ̄
= M3

(
2k2C

◦ z1

1 + z3

)
; z3|σ̄=0 = zÎ

3(i),

3|σ̄=σ(i) = zÔ
3 (i), if λ(i) = 0, ∀ i = 1, . . . , L (58)

As a result, the IDEAS formulation for a L-size finite dimen-
ional approximation program can be summarized as follows:

I = {qI(1)}, zI = {zI(1)} = {[ zI
1(1) zI

3(1) ]T};
O = {qO(1)}, zO = {zO(1)} = {[ zO

1 (1) zO
3 (1) ]T};

Ô = {qÔ(1), qÔ(2), . . . , qÔ(L)},
Ô = {zÔ(1), zÔ(2), . . . , zÔ(L)};
Ô(j) = [ zÔ

1 (j) zÔ
3 (j) ]T, qÎ = {qÎ(1), qÎ(2), . . . , qÎ(L)};

Î = {zÎ(1), zÎ(2), . . . , zÎ(L)}, zÎ(i) = [ zÎ
1(i) zÎ

3(i) ]T

Fig. 2 shows the result of the IDEAS computation, and Fig. 3
hows a reaction network, obtained by employing the procedure
tated in Section 3.3, to achieve the maximum mass fraction of
he product A3.

The dot–dash curves are results in mass fraction space, when
he constant density and isothermal operation assumptions are
mployed (no longer isobaric condition). Indeed, when the fluid
ensity is constant, the following holds:

1 + C2 + 1

2
C3 + C4 = C0

1 ⇒ C − 1

2
C3 = C0 (59)

s compared to the relation C = C0 which holds for the variable
ensity fluid. Combining Eq. (59) with Eq. (54), which holds

or both the CDF and VDF cases, we get the following relations
nder the constant density assumption:

1 = C1

C0 ; z3 = C3

2C0 (60)
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Fig. 2. Trambouze reaction kinetics attainable region in mass fraction space.

ith these expressions, the Shink-wrap algorithm is carried out
o construct the AR in mass fraction space for the CDF reactor
etwork.

It can be seen from Fig. 2 that the constant density AR
ontains higher mass fraction values for product A3, than when
he variability of density is properly accounted for. The variable
ensity AR boundary consists of a straight line that is tangent
o the VDF CSTR curve and goes through the network feed,
nd a VDF PFR trajectory starting at the previously identified
angent point. This behavior is similar to that exhibited by
he constant density AR. It can be seen from Fig. 3 that the
aximum A3 component mass fraction can be obtained by
reactor network that consists of a VDF CSTR followed

y a VDF PFR. In the identification procedure, the desired
omposition point corresponding to maximum A3 mass fraction
i.e. (z1, z3) = (0.0, 0.467)) does not belong to T1 and Ť1, and
oes not belong to H1. However, the PFR backward trajectory
rom the desired composition point (i.e. Ť2) intersects with

2. Indeed, Ť2 intersects with T1. To this point, the procedure
ucceeds and the reactor network in Fig. 3 is identified.

.2. Reversible Van de Vusse reaction kinetics

Let us consider the following Van de Vusse-like gas phase
eaction pathway taking place in an isothermal, isobaric reactor
etwork, with a feed of pure reactant A1 and C0

1 = 2.0 kmol/m3.
e seek to create the AR for components A1 and A2 in mass

raction space again employing the ideal gas assumption.

1(gas)
k1→ A2 (gas, product)
(first order, k1 = 1.0 × 10−4 (1/s));

2
k2→ A1 (first order, k2 = 5.0 × 10−3 (1/s));

Fig. 3. Reactor configuration for trambouze reaction kinetics.

m
v
s

ig. 4. Van de Vusse reaction kinetics attainable region in mass fraction space.

A2
k3→ A3(gas) (second order, k3 = 2.0 × 10−3 m3/(kmol s));

A1
k4→ A4(gas) (second order, k4 = 0.2 m3/(kmol s))

here the molecular weight is M1 = 25 kg/kmol. The reaction
ates for this reaction pathway are given as

1 = −k1C1 + k2 C2 − k4C
2
1; r2 = k1C1 − k2C2 − k3C

2
2;

3 = 1

2
k3 C2

2; r4 = 1

2
k4C

2
1

gain C = P/RT = C◦ = 2.0 kmol/m3. The following rela-
ions can be easily derived:

1 = C
2z1

1 + z1 + z2
= C◦ 2z1

1 + z1 + z2
;

2 = C
2z2

1 + z1 + z2
= C◦ 2z2

1 + z1 + z2
(61)

The generation rates for componentsA1 andA2 depend solely
n z1 and z2, the VDF mass fraction/flowrate models and the
DEAS formulation can be rewritten in the way similar to the
bove case, and is not elaborated here.

Fig. 4 shows the result of the IDEAS computation, and Fig.
shows a reaction network that achieves the maximum mass

raction of the product A2.
When the density is constant, the following holds:

1 + C2 + 2 C3 + 2 C4 = C0
1 ⇒ 2 C − C1 − C2 = C0 (62)

ombining with Eq. (61), we get

1 = C1

C0 ; z2 = C2

C0 (63)
Again, the constant density AR attains higher product A2
ass fraction values. However, close to the ordinate axis, the

ariable density AR contains points that are outside of the con-
tant density AR.

Fig. 5. Reactor configuration for Van de Vusse reaction kinetics.
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tion) x: z1; y: z2; z: z3;

Fig. 7. Projection of Trambouze kinetics AR to (z1, z3) mass fraction space (no
ideal gas assumption).

Table 2
Thermodynamic data

ith component Critical temperature Tci (K) Critical pressure Pci (kPa)

A1 544 5030

c
f
P

molar concentration than the one arising under the ideal gas
assumption. As a result, more A3 is produced. The quantified
peak mass fractions of product A3 are 0.467 and 0.48 for the ideal
gas AR and the non-ideal gas AR, respectively. Fig. 8 shows a
W. Zhou, V.I. Manousiouthakis / Chemi

.3. Trambouze reaction kinetics revisited: no ideal gas
ssumption

In this case, we consider that the ideal gas law is not appli-
able and take into account the non-ideal behavior of the gases
nvolved.

There are a number of non-ideal thermodynamic property
odels that can be used to capture non-ideal gas behavior. In

his case study, a generalized compressibility factor equation of
tate is considered to capture the non-ideal behavior of all gases
nvolved as follows:

= 1

Z
P

RT
(64)

here Z is the compressibility factor. This equation is suitable
or both pure substances and mixtures. Z could be determined
rom experimental data, or other non-ideal thermodynamic mod-
ls as well. Here, the Redlich-Kwong (R-K) equation is used:

− K equation : P = RT

(1/C) − b
− a

(1/C)2 + b (1/C)

(65)

here 1/C is the molar volume, a and b are two species-
ependent constants that can be estimated from the critical
emperature, critical pressure and operating temperature. Com-
ining the compressibility factor equation and the R-K equation,
e have:

3 − Z2 +
(

aP − bPRT − b2P2

R2T 2

)
Z − abP2

R3T 3 = 0 (66)

The equation can be solved analytically for three roots.
f there are multiple real roots, then the largest value of Z
orresponds to the vapor phase, and the smallest value of Z
orresponds to the liquid phase [38].

To apply the R-K equation to mixtures, mixing rules are used
o average the constants ai and bi for each component in the
ixture as follows:

=
n∑

i=1

⎛
⎝ n∑

j=1

xixj(aiaj)0.5

⎞
⎠ ; b =

n∑
i=1

xibi, (67)

and

i = 0.42748
R2T 2.5

ci

PciT 0.5 ; bi = 0.08664
RTci

Pci
(68)

here Tci and Pci are the critical temperature and pressure for
he ith species.

Since a mixture’s compressibility factor Z is a function of all
i and subsequently all zi, the generation rates for components
1 and A3 no longer depend solely on z1 and z3, but on all zi. The
DF mass fraction/flowrate CSTR/PFR models and the IDEAS

ormulation variables are given in the Appendix A for readers’
onvenience. The critical temperatures and pressures are given
n Table 2. The three-dimensional (z1, z3, z4) VDF AR is shown

n Fig. 6, while its projection on the two-dimensional (z1, z3)
ubspace is shown in Fig. 7.

From Fig. 7, it can be seen that the non-ideal gas AR is larger
han the ideal gas AR. This can be explained as follows: the

F
a

A2 538 4950
A3 460 3500
A4 548 5090

alculation of Z using the above thermodynamic data ranges
rom 0.25 to 0.65 for the consideredT ,P conditions (T = 550 K,

= 56 atm). In turn, this gives rise to a higher average total
ig. 8. Reactor configuration for Trambouze reaction kinetics without ideal gas
ssumption.
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eaction network that achieves the maximum mass fraction of
he product A3.

. Discussion and conclusions

In this work, the VDF CSTR and PFR models are shown
o satisfy the requirements necessary for the application of the
DEAS framework to VDF reactor network synthesis problems
e.g. gas phase reactions). In addition, the Shrink-wrap algo-
ithm for AR construction is shown to be applicable to VDF
R construction in mass fraction space. This conceptual devel-
pment allows the rigorous application of the Shrink-wrap AR
onstruction methodology in mass fraction space to VDF reac-
or networks. The proposed methodology is illustrated on three
ase studies, involving both ideal and non-ideal gas models.

Future research will focus on the synthesis of non-isothermal
DF reactor networks. By incorporating energy balance equa-

ions in each reactor model, and demonstrating again the
pplicability of IDEAS, non-isothermal VDF reactor network
ynthesis problems can be addressed, albeit in higher dimen-
ional spaces than those used for isothermal problems.
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he National Science Foundation through grant CTS 0301931
nd the equipment donated by Intel Corporation through its
igher Education Program.

ppendix A. VDF models and IDEAS variables for
rambouze reaction kinetics without ideal gas
ssumption

The VDF mass fraction/flowrate CSTR/PFR models.

CSTR model

Ô
1 (i) − zÎ

1(i) = σ(i)M1(−k1 − k2Cx1 − k3(Cx1)2) (69)

Ô
3 (i) − zÎ

3(i) = σ(i)M3(2k2(Cx1)) (70)

Ô
4 (i) − zÎ

4(i) = σ(i)M4(k3(Cx1)2) (71)

= 1

Z
P

RT
(72)

3 − Z2 +
(

aP − bPRT − b2P2

R2T 2

)
Z − abP2

R3T 3 = 0 (73)

=
4∑

i=1

⎛
⎝ 4∑

j=1

xixj(aiaj)0.5

⎞
⎠ ; b =

4∑
i=1

xibi (74)
1 = z1(i)

1 + z3(i)
; x3 = 2z3(i)

1 + z3(i)
; x4 = z4(i)

1 + z3(i)

(75)

2 = 1 − x1 − x3 − x4, if λ(i) = 1, ∀ i = 1, . . . , L (76)
gineering Journal 129 (2007) 91–103

PFR model

dz1

dσ̄
= M1(−k1 − k2Cx1 − k3(Cx1)2);

1|σ̄=0 = zÎ
1(i), z1|σ̄=σ(i) = zÔ

1 (i) (77)

dz3

dσ̄
= M3(2k2(Cx1));

3|σ̄=0 = zÎ
3(i), z3|σ̄=σ(i) = zÔ

3 (i) (78)

dz4

dσ̄
= M4(k3(Cx1)2);

4|σ̄=0 = zÎ
4(i), z4|σ̄=σ(i) = zÔ

4 (i) (79)

= 1

Z
P

RT
(80)

3 − Z2 +
(

aP − bPRT − b2P2

R2T 2

)
Z − abP2

R3T 3 = 0 (81)

=
4∑

i=1

⎛
⎝ 4∑

j=1

xixj(aiaj)0.5

⎞
⎠ ; b =

4∑
i=1

xibi (82)

1 = z1

1 + z3
; x3 = 2z3

1 + z3
; x4 = z4

1 + z3
(83)

2 = 1 − x1 − x3 − x4, if λ(i) = 0, ∀ i = 1, . . . , L (84)

he IDEAS formulation for a L-size finite dimensional approx-
mation program can be summarized as follows:

I = {qI(1)}, zI = {zI(1)} = {[ zI
1(1) zI

3(1) zI
4(1) ]T};

O = {qO(1)}, zO = {zO(1)} = {[ zO
1 (1) zO

3 (1) zO
4 (1) ]T};

Ô = {qÔ(1), qÔ(2), . . . , qÔ(L)};
Ô = {zÔ(1), zÔ(2), . . . , zÔ(L)},
Ô(j) = [ zÔ

1 (j)zÔ
3 (j) zÔ

4 (j) ]T;

Î = {qÎ(1), qÎ(2), . . . , qÎ(L)};
Î = {zÎ(1), zÎ(2), . . . , zÎ(L)},
Î(i) = [ zÎ

1(i) zÎ
3(i) zÎ

4(i) ]T
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